
Numerical Integration
Techniques

E
XACT SCLUTIONS of the point kinetics equations present

many difficulties, as we have seen in the previous chap­

ter.Thus we look at approximate integration methods. A

complete numerical analysis course could be written on

them. We will examine a very small number of them, and then only

from a practical point of view, and letting go of much mathematical

rigor.

Criteria

In practice, the choice of a numerical method relies on 3 main criteria,

• truncation error

• stability

• ease of computation
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Equilibrium between these 3 criteria will vary from analysis to analy­

sis. In some cases, stability of the solution might be overpowering, in

other cases ease of computation might be more important.

We will only look at integration methods that are easily generalized for

th", space discretized equations. Therefore, the Runge-Kutta methods

and the predictor-corrector methods will not be discussed here,

because the methods are not very wen adapted to the space-time

kinetics methods.

In order to review each of the 3 criteria for a few very simple methods,

we rewrite here the point kinetics equations in the form

!!.-'I' = R'I'
dt

In this chapter, we will use the following notation:

(EQ84)
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Also, in the stability evaluation, we will suppose that the operator R

stays constant during a given transient.

We will use the principle, without proving it, that the stability proper­

ties of a numerical scheme does not depend on the particular choice of

basis used to represent vectors and matrices involved in the problem.
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We will consider three numerical schemes, the explicit method, the

implicit method and the Crank-Nicholson method. We will then see

that the 0 method integrates these three methods into one.

The first step, for all the methods that we will analyze is to replace the

time derivative in (84) by

d . qr" + 1 _ qr"
- qr = -----c--=--
dt LH

Explicit Method

In the explicit method. the right hand side of (84) is replaced by RqrO .

In this case, (84) becomes

Truncation Error

qr" + 1 = (I + RAt)qr" (EQ85)

Formally, the exact solution of the differential equation (84)is an expo­

nential of the matrix R ,which is

qr" + 1 = exp(RAt)qr"

The truncation error is the difference between are approximate solu­

tion and the exact solution of the differential equation. Consequently,

the truncation error ET will be given by
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ET = (I -:- RLlt)'lt" - exp(RLlt)'lt"

= (I + RLlt - expRLlt)'lt"

Let us now perform the expansion of the matrix exponential,

and consequendy

The explicit method is thus of order Jiit
2

i.
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Stability

In order to examine stability, we first express our differential equation

in the basis that diagonalizes the matrix R . In this case, we go back to

equation (85) that we rewrite in the particular basis

0+1 n
X = (l+wLlt)x

The w will thus be eigenvalues of R, in other words, the roots of Nor­

dheim's equation (83).

If we start from the initial conditions x
0

at time t = 0, the first cycle

of calculations will bring up a vector x I ,

I 0
X = (I + wLlt)x
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Explicit Method

The second cycle applied to x I will bring

2 1
X = (l + Ul6.t)X

Thus

x" = (l + w6.t)(1 + Ul6.t)X
C

=- (I + Ul6.t)\O

Continuing this process, we find

D + I (1 + A)D + I °X = Ulut x

127

If for example we had a negative reactivity, we know that all the .-oots

ware negative, and we must have a solution that decreases in time.

Consequently

11 + w6.tl < 1

must hold. This can also be written as

-I < I + w6.t < I

Let us now replace w by -Iwi to emphasize that all ware negative,

-1 < 1-lwl6.t< 1

The system will be stable if both branches of the inequality are true.

Two possibilities must be examined: l-lwl6.t < 1 and

-I < 1-lwl6.t.
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o Case 1 : 1-lwl6.t < 1

We substract 1 from each side of this inequality, to get

-lwl6.t < o. This is always true.

o Case2: -1 < 1-lwl6.t

We substract 1 from each side of this inequality, to get
- 2 < - Iwi 6. t .We change the sign by multiplying by -1 and we
reverse the sides of the inequality,

Iwl6.t < 2

or

2
6.t < Iwl (EQ86)
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There is thus a condition on 6.t in order to insure stability of the

ell:plicit scheme. This stability condition (86) is very restrictive. The

negative roots of Nordheim's equations are very negative, and the most

negative of them is smaller than - >"D' being around - ~ . Therefore,

time steps smaller than 10 to 20 milli-seconds will be necessary, other­

wise spurious oscillations of fast increasing amplitudes will overtake

the solution.

Ease of computation

The explicit method, given in (85) involves only the multiplication of a

matrix by a vector to obtain the solution at the next time step. From

this point of view, the explicit method is very simple, and is very easy

to implement. It will not necessitate very large computing resources.
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Implicit Method

t29

Our approach will be the same as that of the explicit method. In the

implicit scheme, we replace the right hand side of (84) by R'I'" + 1 ,

instead of the R'I'" of the explicit method. The implicit method is thus

u' h . 'T'" + 1 d' ,T,'"vve regroup 1 e terms In '" an In '" to get

(I - RLit)'I'" + I = 'It"

d " + I . 'T'"an we express 'i" In terms of... ,

(EQ87}

Truncation Error

The truncation error is obtained by the difference between the approx­

imate solution and the exact solution,

-1 n n
ET = (I - RLit) '¥ - exp(RLit)'I'

and if we make the expansions

which gives
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130

Consequently, the implicit method is a method of order ~At
2

. The

coefficient of At
2

is 'h, the same as that of the explicit method.

Stability

Again, we express the system in the vector bz.sis that diagonalizes it.If

we examine the sequence of solution vectors, we have

Xl = (l - wAt)-lxO

i = (l - wAt)-\'

-I -1 0
= (l - <JIAt) (1 - wAt) x

= (l - wAll -2xO

xn + 1 = (1 _ wAt)-(n + l)xO

Consequently, we will have a stable solution if

1
-1 < 1 - wAt < 1

We must have a solution that goes to 0 when reactivity is negative, that

is when all the ware negative. In this case, w can be replaced by

-1001, which gives

1
-1 < 1 + Iwl6.t < 1
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Since 1 + [wi Llt is positive, we can multiply the inequality by this fac­

tor without changing the inequalities themselves

-(1 + IwiLlt) < 1 < (1 + [wILlt)

We examine each of these in turn:

• Case 1 -(1 + [(viM) < 1:

We have that 1 -1- Iwl Llris always greaterthan 1, since Iwl is always
positive. Consequently, the left hand side is always negative, and
thus always smaller than 1. The inequality is always true.

• Case21<(l+lwjLlt):

Substracting 1 from each side of the inequality, which gives

0< Iw\Llt. But the value of Iw! is always positive. Then the inequal­
ity is always true.

The stability conditions are thus always satisfied. We conclude that the

implicit method is unconditionally stable.

Ease of Computation

The implicit method, given in (87) requires the inversion of the matrix

R to get the solution at the next time step. This matrix can change at

each time interval, according to the cross-section and reactivity

changes. The inversion will have to be performed at each time interval.

From this point of view, the implicit method requires more calculation

effort and time than the explicit method. It has the advantage of

unconditional stability, butat the cost of a matrix inversion.
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Crank-Nicholson Method

132

Again we follow our previous approach. In the Crank-Nicholson

scheme, we replace the right hand side of (84) by 4R'!'" + 4R'!'" + I , the

average of the solution vectors taken at time to and at to + 1 . The

Crank-Nicholson is then

(EQ88)

132

which becomes, after regrouping the vectors belonging to identical

times,

( I \ 0+ 1 ( I \T.
II - -Rf>t)\q1 = I + -Rf>t p'o

2 , 2 /

~.nd isolating the new solution vector in terms of the previous vector

Truncation Error

Once again, the truncation is obtained by the difference between the

approximate solution and the exact I>olution, which becomes in the

Crank-Nicholson scheme

Performing the expansion
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(
RAt)-l( RAt\-( 1 (1)2 X RAt)1 - 2 1 +2) 1 + i RAt + 2: RAt + ... 1 + 2

=1 + 2~RAt + 2(iRAtY+ 2(iRAtf +...

Together with the expansion of the matrix exponential, the truncation

error can be expressed as

ET = (1 + RAt + ~CRAt)2 + iCRAt)
3

+ ... )

-(1 + RAt -+ ~R2At
2 + ~R3At

3 + ... )

Stopping the expansions to terms in At' gives

1 3 3
ET = -R At

12

Therefore, the Crank-Nicholson method is of order /2 At3
.

Stability

Here also we change the basis in which the matrix is expressed to one

in which it is diagonal. Examining the series of solution vectors shows

that
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2 ( w~t)-I( w~t)l 1
X = 1- 2 1+ 2 X

( W~l2( w~tJ °= 1- 2 1+ 2 X

0+1 ( w~t,-(n+ 1)( w~t)O + I
X = 1-T) ll+T x

O

r WT'l+T °= l (·)~t X
1-T

The solution will be stable if

r
w~t]

-1< i+T <1
w~t

,1-T

134

134

We must have a solution that tends to 0 when reactivity is negative, that

is when all the ware negative.

In such a case, wcan be replaced by -Iwi , and we find for the stability

conditions

l
' IWI~t]

-1< 1-;:]: <1

1+-2-
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since the denominator is always positive, it can multiply the two ine­

qualities without affecting the inequality signs, which gives

(
IW/At) IwlAt ( 1001 At)

- 1 + -2- < 1 - -2- < 1 + -2-

We only have to examine each of these to find the stability conditions

1(.>1 At ( 1001 At)
• Case 1 1 - -2- < 1 + -2- :

Add 1001 At / 2 on each side of the inequality, to get

1 < 1 + 1001 At which of course is always true.

• Case 2 -(1 + IwlAt / 2) < 1 - 1001 At/ 2: Substract 1 from each

side, and get -2 - IwIAt/2 < -lwIAt/2 which is also always
true.

The Crar.k-Nicholson method is therefore unconditionally stable.

Ease of Computation

The Cran.1;:-Nicholson method (88) requires the multiplication of a

vector by a matrix followed by a matrix inversion and another matrix

multiplication. The method is thus somewhat expensive in computer

resources. However, the matrix-vector multiplication is not very

demanding compared to the matrix inversion. The Crank-Nicholson

method is barely more expensive than the implicit method.
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Theta Method

136

This method is a generalization of the type of methods that we just

examined. It consists in discretizing system (84) in the following way:

.Trn + 1 .T,n

..::'t_-,----=""_ = (I _ 0)R'l'n + 0R'l'n + 1
At

(EO 89)

136

In other words, the right ha!1d side is a linear combination of the vec­

tors taken at time tn and tn + 1 • Regrouping the vectors belonging to

the same time,

(I-0RAt)'l'n + 1 = (I + (1 - 0))RAt'I'n

:.'I'.n + 1 (I -0RAt) -1(1 + (I - 0))R.1.t'o/n

We find immediately that

• 0 = 0 gives t.l,.e explicit method

• 0 = I / 2 gives the Crank-Nicholson method

• 0 = I gives the implicit method

So the 0 method will require the same resources as that of the Crank­

Nicholson method. Also, with a fixed At, both implicit and explicit

methods can also be reproduced.

The main advantage of this method is the possibility to vary the value

of 0 during a transient. This could then give the best possible method

as a function of observed variations of the solution during the tran­

sient.
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